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Summary 
In recent years, 3D volumetric attributes have gained wide 

acceptance by geosciences interpreters. The early 
introduction of  single-trace complex trace attributes was 
quickly followed by seismic sequence attribute mapping 
workflows. 3D geometric attributes such as coherence and 
curvature are also widely used. Most of these attributes 
correspond to a very simple easy-to-understand measures 
of a waveform or surface morphology. However, not all 
geologic features can be so easily quantified. For this 

reason, simple statistical measures of the seismic waveform 
such as RMS amplitude prove to be quite valuable in 
delineating more chaotic stratigraphy. In this paper, we 
show how modern texture analysis based on the gray-level 
co-occurrence matrix, when coupled with recent 
developments in self-organizing maps clustering 
technology, extends such statistical measures to delineate 
features that geoscientists can see, but not easily describe.  

 

Introduction 
One of the goals of the seismic interpreter  is to analyze 
seismic amplitude and phase character in order to predict 
lithologic facies and rock properties such as porosity and 
thickness. Seismic attribute analysis is a technique that is 
commonly used by the oil industry to delineate 
stratigraphic and structural features of interest. Seismic 

attributes   are particularly important in allowing the 
interpreter to enhance and visualize subtle features at or 
below the limits of seismic resolution. For example, 
coherence can generate easy-to-understand images of 
polygonally faulted shales that may be difficult to see on 
seismic amplitude time slices. Curvature can enhance long 
wavelength (500 -1000 m) flexures and folds in and out of 
the plane. Spectral components may highlight thin bed 
tuning effects buried in the seismic waveform.  

 Each of these attributes is based on a very simple 
geometric or physical model that can be related to structure, 
stratigraphy, diagenesis, or data quality. However, not all 
geologic features follow such a simple model. Experienced 
interpreters can easily recognize the seismic response of 
crystalline basement, mass transport complexes, and 
carbonate reef  buildups. But when put to the task they find 
it difficult to quantitatively define how they do their 

interpretation. Such interpreters (and human beings in 
general) are experts at texture analysis. Our study focuses 
upon seismic texture analysis, borrowing upon techniques 
commonly used in remote sensing to map terrain, 
vegetation, and land-use information.  Textures are 
frequently characterized as different patterns in the 

underlying data. Seismic texture analysis was first 
introduced by Love and Simaan (1984) to extract patterns 

of common seismic signal character. Recently, several 
workers (West et al., 2002; Gao, 2003; Chopra and 
Alexseev, 2005) have extended this technique to 3D 
seismic data through the use of the gray-level co-
occurrence matrix (GLCM). GLCM  allows the recognition 
of patterns significantly more complex than simple edges. 
GLCM-based texture attributes are  able to delineate 
complicated geological features such as mass transport 

complexes and amalgamated channels that exhibit a distinct 
spatial pattern.  

 

 

What is texture? 
Texture is an everyday term relating to touch that includes 
such concepts as rough, silky, and bumpy.  When a texture 
is rough to the touch, the surface exhibits sharp differences 

in elevation within the space of your fingertip.  In contrast, 
silky textures exhibit very small differences in elevation. 
Seismic textures work in the same way, except elevation is 
replaced by brightness values (also called gray levels). 
Instead of probing a finger over the surface, a "window" or 
a square box defining the size of the area is used (Mryka, 
2007). 

 

The Grey Level Co-occurrence Matrix  
GLCM is a tabulation of how often different combinations 
of voxel brightness values (gray levels) occur in a sub-
image window. The Grey Level Co-occurrence Matrix 
introduced by Haralick et al.(1983)  has been applied by 
Reed and Hussong (1989) Gao et al. (2002), and Gao 
(2003)  to 3D seismic data in order to quantify seismic 
stratigraphic textures.  Intuitively, we mentally apply 
texture analysis any time we view a shaded-relief time-

structure map. We recognize piecewise-smooth surfaces 
separated by discrete faults, tightly folded areas, incised 
dendritic channels, and chaotic zones.  Our method differs 
from others in that it is structural-oriented and can therefore 
be applied to structurally complex 3D seismic volumes. 
Given that the seismic wavelet modulates the reflection 
coefficients and hence the subsurface lithology, we feel that 
measures such as spectral decomposition do an excellent 

job of measuring amplitude variability normal to the locally 
dipping plane. Parallel to the local dip, we define a local 
analysis window.  We also reformat the data from 32-bit 
data to 65 integer gray levels (with values 1-32 correlating 
to troughs, 33 to a zero-crossing, and 34-65 to peaks), 
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constituting a “quantization” step. We compute the GLCM 
within a (2mx+1) by (2my+1) window: 

 x

x

y

y

m

mp

m

mq

qqpppqij jdidM )()( ,

 (1)  

 where dpq and dpq are the integer-valued scaled seismic 
data at the (p,q) and (p+Δp,q+Δq) CDP locations and the 
delta function, δ(ξ)=1 if ξ=0 and 0 otherwise. We choose a 
suite of offsets Δp and Δq to represent repetative patterns at 
angles of 00,450,900,1350 to the acquisition axes. Since our 
input seismic (volumetric dip magnitude, or other attribute) 

data have been scaled to be integers between 1 and 65, our 
function Mij can be written as a 65 by 65 matrix, M.  
Haralick et al. (1973) suggested 14 statistical measurements 
to describe a GLCM created from a moving window. Gao 
(2003) has added a few more.  In this study, we use the four 
most-commonly used measurements of energy, E, contrast, 
C, homogeneity, H, and entropy, S.  
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where N denotes the number of grey levels (in our case 65), 
and i and j are the rows and columns of  the matrix M.  
 
Summarizing, we need to define four items to use the 

GLCM 

 the quantization level of the image,  

 the size of the moving window,  

 the direction and distance of voxel pairs, and  

 the statistics used as a texture attribute.  

Given these four parameters, texture images can be 
extracted using along local dip and azimuth and used as 

features for direct interpretation or subsequent 
multiattribute classification. 

 

 GLCM Worflow 
Our 3D workflow is described by the flow chart shown in 
Figure 1. First, we precompute dip and azimuth at every 

seismic sample using one of several alternative 3D 
volumetric dip calculation algorithms. For reservoir studies, 
a sequence of stratal slices may be more appropriate. Next, 
we extract a (2mx+1) by (2my+1) window of data for each 
and every output location. We then construct the GLCM 

using equation 1 followed by one or more attributes using 

equation 2. Finally we cluster these attributes using self-
organizing maps for further interpretational analysis. 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 1. The 3D GLCM workflow.  

 

Self Organizing map (SOM)  
Self organizing maps, SOM, (Kohonen, 2001) and K-

means clustering are the two most commonly used tools for 

non-supervised seismic facies analysis with SOM providing 
ordered clusters that can be mapped to a gradational color 

bar (Coléou et al, 2003). However, SOM can be interpreted 
as a mapping of the input n-dimensional input seismic 

attributes space onto a two-dimensional grid that preserves 
the original topological structure. Since seismic data 

measures the lateral changes in geology, SOM preserves 
the topological relation of the underlying geology (Matos et 

al., 2007). In this paper we assumed that the input variables 
to the SOM are the GLCM attributes and the resulting 2D 
SOM is colored against a 2D colorbar (Matos et al., 2009). 

 

Application to a photographic of an outcrop image  

 
To demonstrate how GLCM techniques are applied to remote 
sensing data, we apply it to a photographic image of the outcrop 

shown in Figure1 which shows fine-grained clay-rich limestones 
that occur in beds up to two feet thick with intervening shale 
layers. The photographic image size is 424 by 556 pixels, and is 
quantized into 256 grey levels. We used an 11 by 11 running 
window of (mx=my=5) and computed matrices M and  texture 
attributes at (00,450,900,1350). After principal component 
analysis (PCA) of the collected texture images, PC components 
representing  more than 99% of information were extracted for 
classification. Figures 2c and d, indicate that certain attributes 

shows distinct features compared to other attributes. After 
applying SOM, (Figure 2b) the fine-grained clay-rich limestones 
and the intervening shale layers were distinctly separated by the 
assigned quantization level. 
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Figure 2. (a) Photo of an outcrop image of Monongahela  

Group, Pittsburgh Formation (from www.geology.pitt.edu). Block white  

arrows indicate texture characteristics espected to be seen after applying 

the GLCM and the SOM analysis. (b) Corresponding  SOM  1D  and 

GLCM (c) homogeneity 90
0
, and (d) contrast attributes 90

0
. 

 

 Application to 3D seismic data  
 
Given this visual calibration we turn our attention to a 3D 
seismic survey acquired in Osage County, OK, where our goal is 
to map subtle, thin-bed channels that form economic gas and oil 

reservoirs. The resulting texture and SOM analysis provides a 
clearer picture of the distribution, volume, and connectivity of 
the hydrocarbon- bearing facies in a reservoir facies know to 
have sand channels. Figure 3a shows to a horizon slice taken at 
20ms below Oswego horizon through the seismic amplitude 
data. Figures 3b and c show the final 2D SOM and  
corresponding 2D color bar. Figures 3d and e show two 
representative, complementary, GLCM attributes - contrast and 

energy. These latter contrast and energy images have high 
amplitude values within the channel and intermediate values in 
what we interpret to be the channel levee. 
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Figure 3. (a) Horizon slice 20ms below the Oswego horizon showing a 

suspected channel. Block white  arrow indicates a channel-levee 

complex. (b) SOM clusters computed using GLCM contrast, and  energy 

attributes compute at  0, 45, 90, and 135 degrees with offests Δp, Δq = 0 

or 1, (d) 2D SOM 256-class topology mapped against  a 2D 256- 

colorbar. Horizon slices through representative GLCM (d) contrast and 

(e) energy attribute volumes indicating the channel levee complex.  

(f)Vertical slice AA’ through the seismic amplitude volume showing the 

channel. 
 
 

Conclusion 
2D seismic stratigraphy is based on human interpreter 
identification of subtle textures, such as onlap, offlap, 
unconformities, hummocky clinoforms, and parallelism. With 
the aid of attributes, 3D seismic geomorphology extends these 
concepts to volumetric data. GLCM technology is a preliminary 

attempt at quantifying these relationships for further analysis 
using computer vision. Texture attributes hold significant 
promise in quantifying geological features such as mass complex 
transport, amalgamated channels, and dewatering features that 
exhibit a distinct lateral pattern beyond simple edges. 
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